a2 United States Patent

US009454589B2

10) Patent No.: US 9,454,589 B2

Nguyen et al. @5) Date of Patent: Sep. 27,2016
(54) PROVIDING MESSAGES FOR A JAVA (56) References Cited
MESSAGE SERVICE
U.S. PATENT DOCUMENTS
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 7284233 B2* 10/2007 Sengodan ... GOSF 17218
- e g 715/784
(72) Inventors: Flllp.Nguyen, Brno (CZ); Filip Elias, 7,290,248 B2* 10/2007 Sengodan ... GO6F 17/218
Vysni Lhoty (CZ) 717/136
7,290,249 B2* 10/2007 Sengodan GO6F 17/218
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 717/136
7,519,669 B2* 4/2009 Nikolov G06Q 10/107
(*) Notice: Subject to any disclaimer, the term of this 7640357 B2* 122009 Kirov Go 65?8%8?
patent is extended or adjusted under 35 TR omE e amemT e 209/231
U.S.C. 154(b) by 0 days. 8,095,598 B2* 1/2012 Follmeg G06Q 10/10
709/204
(21) Appl. No.: 14/857,971 8,321,390 B2 11/2012 Swarnakar
8,626,778 B2* 12014 Wilkesccccevvrnennen. 706/12
(22) Filed: Sep. 18, 2015 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2016/0042043 Al Feb. 11, 2016 USPTO, Office Action for U.S. Appl. No. 13/688,698, mailed Jan.
12, 2015.
(Continued)
Related U.S. Application Data
(62) Division of application No. 13/688,698, filed on Now. Primary Examiner — Jean M Corrielus .
29, 2012, now Pat. No. 9,141,681 (74) AZZO}’I’!@)/, Agenl, or Firm — Lowenstein Sandler LLP
(51) Int. ClL 57 ABSTRACT
GO6F 17/30 (2006.01) Providing messages for Java message service (JMS) is
HO4L 12/58 (2006.01) disclosed. A described method includes determining time-
stamp information associated with a first Java'™ message
(52) US.CL 1p informati iated with a first Java™ g
CPC ... GO6F 17/30569 (2013.01); GO6F 17/30321 ~ service (JMS) message. The timestamp information repre-
(2013.01); GO6F 17/30575 (2013.01); HO4L sents a time when the JMS message is either generated or
51/00 (2613 01); GOG6F 17/30566 (20’13 01); received by a processing device. The method also includes
R GOGF 17/30578 (2013' 01)’ determining destination information associated with the
’ JMS message. The method further includes converting the
(58) Field of Classification Search

CPC ..ccovvvvvcrnne GOG6F 17/30427; GO6F 17/30943;

GO6F 17/30569; GO6F 17/30578; GOGF

17/30566; GOGF 17/30575; GO6F 17/30321

USPC ittt 707/756, 769
See application file for complete search history.

Client 101

JMS message into a first key-value data pair having a key
data and a value data. The key data includes the timestamp
information and the value data includes the destination
information of the first IMS message.

20 Claims, 8 Drawing Sheets

Server 120

Client API
Stub 102

NoSQL
Driver
1

NoSQL Database
124

Submit a Key-Value data
pair
202

Value data pair
associated with the JMS
queue 206

Send the retrieved Key-

Request to retrieve Key- | [_

Store the Key Value data

Pair 204a
_____________ -
Create a column family
and store the Key Value
data Pair in the column
___Jomiy20db _ ___ _ >

Retrieve the Key-Value
data pair from the JMS
queue 208

Value data pair
associated with the JMS
queue 210

US 9,454,589 B2

Page 2
(56) References Cited 2008/0244016 Al* 10/2008 Parthasarathy GOGF 9/526
709/206
U.S. PATENT DOCUMENTS 2009/0276577 Al 11/2009 Bell
2010/0318498 Al 12/2010 Swarnakar
2004/0148569 Al* 7/2004 Sengodan GO6F 17/218 2012/0023116 Al* 12012 Wilkes GO6F 17/30427
7151239 2012/0109935 Al 5/2012 Meij 7077736
% eijer
2004/0148585 AL* 7/2004 Sengodan G06F7};ﬁéf 2012/0110428 Al 52012 Meijer
2004/0158837 Al* 8/2004 Sengodan ... GOGF 17/218 %8}%;8332885 N 1%8}% Sowe ‘;'al'
_ 7197313 2013/0212131 Al 82013 Reddy
2005/0246186 Al* 11/2005 Nikolov GO06Q 10/107 2013/0339293 Al 12/2013 Witten et al.
709/206 2014/0040182 Al 2/2014 Gilder et al.
2005/0256931 Al* 11/2005 Follmeg G06Q 10/10 OTHER PUBLICATIONS
709/206
2005/0262205 Al* 11/2005 Nikolov G06Q 10/107 USPTO, Notice of Allowance for U.S. Appl. No. 13/688,698,
709/206 mailed May 19, 2015.
2005/0262215 Al* 11/2005 Kirov G06Q 10/107
709/207 * cited by examiner

U.S. Patent

Sep. 27, 2016

Client Machine

101

Client API
Stub
102

Compute
Network
110

Sheet 1 of 8

US 9,454,589 B2

JMS Server Machine

120

NoSQL
Driver
122

NoSQL
Database
124

100

Fig. 1

U.S. Patent Sep. 27, 2016 Sheet 2 of 8 US 9,454,589 B2

Client 101 Server 120
Client API NoSQL NoSQL Database
Stub 102 Driver 124
122
Submit a Key-Value data
pair
202 > Store the Key Value data

Pair 204a

Create a column family
and store the Key Value
data Pair in the column

Request to retrieve Key- | | _ _ _ _ family204b __ _ _ _ _ —
Value data pair
associated with the JMS

queue 206 >

Retrieve the Key-Value
data pair from the JMS

Send the retrieved Key- | |« queue 208

Value data pair
associated with the JMS
queue 210

Fig. 2A

U.S. Patent Sep. 27, 2016 Sheet 3 of 8 US 9,454,589 B2

Client 101
Server 120
Client API NoSQL NoSQL
Stub 102 Driver Database
122 124
Request to
subscribe to the
JMS Topic 212 > Create a column family
subscribed to the JMS topic
214
Send a new Key- >
Value data pair related
to the JMS topic 216 Replicate the new Key-Value data
> pair in the column family 218

Retrieve the replicated Key-

t ir 22
Send the replicated Value data pair 220

Key-Value data pair
222

-~

Fig. 2B

U.S. Patent

310

312

314

318

Sep. 27, 2016 Sheet 4 of 8

Receive key-value data pair

Extract destination information from
value data of the received key-value
data pair

\ database for either the JMS
queue or the JMS topic

Y

Search the NoSQL

associated with the received
key-value data pair

US 9,454,589 B2

Does either
the JMS queue or
JMS topic for the
received key-value data
Pair exist in the

Create a
column family
in the NoSQL

database

NoSQL
database?

Y

Store the received key-value data pair
in the column family of the NoSQL
database

300

Store the
received key-
value data pair
in the column
family of the
NoSQL
database

Figure 3

320

322

U.S. Patent Sep. 27, 2016 Sheet 5 of 8 US 9,454,589 B2

410 l

Receive a request to retrieve a
Key-Value data pair associated
with the JMS queue

v

Search the NoSQL database
for the Key-Value data pairs
associated with the JMS queue

412 \
414 ¢
\ Retrieve the Key-Value data
416

pairs associated with the JMS
queue from the NoSQL
database

'

Send the retrieved Key-Value
data pairs to the client

Figure 4

400

U.S. Patent

Sep. 27, 2016 Sheet 6 of 8

START

'

Ve

Receive a request to subscribe to
JMS topic

v

Create a Column Family of the Key-
Value data pairs in the NoSQL
database that subscribes to the JMS
topic

514

v S

Receive a new JMS Message in the
form of new Key-Value data pair
associated with the JMS Topic

516

Y

/

Replicate the new Key-Value data
pair for the client in the Column
Family subscribed to the JMS topic

:

518

/

Send the replicated Key-Value data
pair to the client in the Column
Family subscribed to the JMS topic

500

Figure 5

US 9,454,589 B2

U.S. Patent Sep. 27, 2016 Sheet 7 of 8 US 9,454,589 B2

'

Receive a JMS message

'

Determine timestamp information
associated with the JMS message

l

Determine destination information
associated with the JMS message

'

Convert the JMS message into a key-
value data pair form

612

614

616

/ < L

618

/

Send the converted key—value data
pair to the JMS server

Figure 6

600

U.S. Patent

Sep. 27, 2016

702

e

PROCESSING
DEVICE

NoSQL
Processing
Logic

722
|~

Sheet 8 of 8

N

e E—

704

e

MAIN MEMORY

NoSQL
Processing
Logic

722
|~

—P

706

e

STATIC MEMORY

NETWORK
INTERFACE
DEVICE

X

726

BUY

US 9,454,589 B2

~J
o

710

~

VIDEO DISPLAY

712

e

ALPHA-NUMERIG
pt INPUT DEVICE

714

e

CURSOR
CONTROL

>
DEVICE

716

/
SIGNAL

GENERATION

DEVICE

718

DATA STORAGE
DEVICE

MACHINE-READABLE |
STORAGE MEDIUM

720

\

722

\

NoSQL |
Processing
Logic

US 9,454,589 B2

1
PROVIDING MESSAGES FOR A JAVA
MESSAGE SERVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of U.S. patent application.
Ser. No. 13/688,698, filed Nov. 29, 2012, and hereby incor-
porated by reference.

TECHNICAL FIELD

The embodiments of the disclosure relate generally to a
computer system and, more specifically, relate to systems
and methods for providing messages for Java message
service.

BACKGROUND

Messaging is a method of communication between soft-
ware components or applications. A messaging system pro-
vides for the communication such that a messaging client
can send messages to, and receive messages from, any other
client. Each client connects to a messaging agent that
provides facilities for creating, sending, receiving, and read-
ing messages.

Many messaging systems exist as part of a set of pub-
lished enterprise-wide standards known as Enterprise Mes-
saging System (EMS). EMS systems are a set of published
enterprise-wide standards that allows organizations to send
messages between computer systems. An example of a
specific application programming interface (API) that
implements an EMS system is the Java message service
(IMS). IMS allows applications to create, send, receive, and
read messages.

The messaging systems that are created in the EMS
system are very complex as the developers not only have to
cope with the Enterprise standards but also create a stable,
scalable and low maintenance messaging system. Although
JMS is an API, it encounters many similar issues as those
involved in setting up a full EMS.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is understood more fully from the detailed
description given below and from the accompanying draw-
ings of various embodiments of the disclosure. The draw-
ings, however, should not be taken to limit the disclosure to
the specific embodiments, but are for explanation and under-
standing only.

FIG. 1 is a block diagram of a computer system in which
the embodiments of the present disclosure may operate;

FIG. 2A illustrates an example of interactions between a
client, and a Java server in accordance with some embodi-
ments;

FIG. 2B illustrates an example of interactions between a
client, and a Java server in accordance with some embodi-
ments;

FIG. 3 is a flow diagram of one embodiment of a Java
server-side method for providing message for Java message
service;

FIG. 4 is a flow diagram of one embodiment of a Java
server-side method for providing message for Java message
service;

FIG. 5 is a flow diagram of one embodiment of a Java
server-side method for providing message for Java message
service;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 illustrates a flow diagram of one embodiment of a
client-side method for providing Java message service; and

FIG. 7 illustrates a block diagram of one embodiment of
a computer system.

DETAILED DESCRIPTION

Embodiments of the disclosure provide for systems and
methods for providing messages to a Java message service
(JMS). A method of embodiments of the disclosure includes
receiving, by a Java message service (JMS) server executed
by a processing device, key-value data pair. key-value data
pair is sent by a client. The method also includes extracting,
by the processing device, destination information of a JMS
message from the value data of the key-value data pair. The
destination information is either a JMS queue or a JMS
topic. The method further includes storing, by the processing
device, the key-value data pair in a column family of not
only structured query language (NoSQL) database when one
of the JMS queue or the JMS topic associated with the
received key-value data pair exists in the column family of
the NoSQL database. The column family includes a plurality
of stored key-value data pairs.

In one embodiment, a method of the disclosure includes
receiving a request to retrieve the key-value data pair
associated with the JMS queue from the JMS server. The
request sent to the JMS server from the client. The method
also includes retrieving the key-value data pair associated
with the JMS queue. The .the key-value data pair associated
with the JMS queue is retrieved from the column family of
the NoSQL database.

In another embodiment, a method of the disclosure
includes receiving a request to subscribe to the JMS topic
from the JMS server. The request is sent to the JMS server
from the client. The method further includes creating a
column family of the key-value data pairs in the NoSQL
database. The column family includes the JMS topic for the
client subscribed to the JMS topic.

In a further embodiment, a a second key-value data pair
associated with the JMS topic is received from the JMS
server. In other embodiments, the second key-value data pair
is replicated in the column family of the NoSQL database
subscribing to the JMS topic.

FIG. 1 is a block diagram that illustrates a network
architecture 100 in which embodiments of the disclosure
may operate. Network architecture 100 includes a client
machine 101 (“client”) and a Java message service (JMS)
server machine (“JMS server”) 120 and a not only structured
query language (NoSQL) database 124. The client 101 may
be any variety of different computing devices including, but
not limited to, a laptop computer, a handheld computer, a
netbook, a desktop, a workstation, a mobile device such as
smart phone, a server device, or any other type of computing
device. Network architecture 100 may include any number
of clients 101 that communicate over the network 110 with
any number of JMS servers 120.

A single client 101 and a single JMS sever 120 are
illustrated and described for sake of clarity; however
embodiments of the disclosure are not limited to such a
depiction. Network 110 may be any type of communication
network including, but not limited to, a local area network
(LAN), a wide area network (WAN) (e.g., the Internet,) or
similar communications network. The network 110 can
include any number of network devices and computing
devices that are in communication over any combination of
wired and wireless communication lines.

US 9,454,589 B2

3

In one embodiment, client 101 is a JMS client that
functions to receive or generate a JMS message. In one
embodiment, a JMS message is an object that contains the
data being transferred between JMS clients. The JMS mes-
sage may include, but is not limited to, text message, bytes
message, stream message, object message, map message,
and so on.

IJMS server 120 may be any type of computing device
including a server device, a plurality of server devices, or
similar computing device. The network architecture 100
may include any number of JMS servers 120 that commu-
nicate over the network 110 with any number of clients 101.
The JMS server 120 may hosts a NoSQL driver 122 and a
NoSQL database 124. In some embodiments, the NoSQL
database 124 may reside in a separate server machine than
the JMS server machine 120.

In one embodiment, the client 101 executes a set of
applications (not shown). A ‘set,” as used herein, refers to
any positive whole number of items including a single item.
The applications may be any computer-executable program
capable of communicating with a server of the JMS server
120. In one embodiment, the application is a client applicant
processing interface (API) stub 102. A stub in distributed
computing is a piece of code used for converting parameters
passed during a Remote Procedure Call (RPC). The RPC
functions to allow a local computer (client) to remotely call
procedures on a remote computer (server). Client API stub
102 functions to convert the JMS message into a key-value
data pair form. In some embodiments, the client API stub
102 sends the key-value data pair to the IMS server 120 as
an ordinary storage request. As such, the client is not aware
of the fact that the JMS message is being stored as the
key-value data pair into the NoSQL database 124.

The key data of the key-value data pair may include
timestamp information of the JMS message. In one embodi-
ment, the key data represents the time when the JMS
message was received by the client 101. In another embodi-
ment, the key data represents the time when the JMS
message was generated by the client 101. In one embodi-
ment, the key-value data pairs are stored in the column
family of the NoSQL database 124 based on the key data
such that the JMS message with the oldest timestamp is
initially stored followed by the JMS message having the
timestamp immediately after the oldest timestamp until the
JMS message with the newest timestamp.

The value data of the key-value data pair may include
destination information of the JIMS message. In one embodi-
ment, the destination is a JMS queue. The JMS queue is a
data construct that stages messages that have been sent and
are waiting to be read. In one embodiment, the IMS queue
supports a one-to-one messaging model, such as point to
point messaging. In another embodiment, the destination is
a JMS topic. The JMS topic may be a distribution mecha-
nism for publish/subscribe messaging for publishing JMS
messages to a particular message topic that are delivered to
multiple subscribers.

In one embodiment, the NoSQL driver 122 functions to
receive the key-value data pair from the client API stub 102.
In some embodiments the key-value data pair is received as
ordinary NoSQL storage request. The NoSQL driver 122
may extract the destination information from the value data
of the key-value data pair. As discussed above, the destina-
tion is either a JMS queue or JMS topic associated with the
key-value data pair.

In other embodiments, the NoSQL driver 122 searches the
NoSQL database 124 for either the JMS queue or the IMS
topic associated with the received key-value data pair. The

10

15

20

25

30

35

40

45

50

55

60

65

4

NoSQL database 124 stores a column family of plurality of
key-value data pairs. In some embodiments, if either the
IJMS queue or the JMS topic associated with the received
key-value data pair exists in the stored plurality of the
key-value data pairs in the NoSQL database 124, then the
NoSQL driver 122 stores the received key-value data pair
with the corresponding stored key-value data pairs in the
column family of the NoSQL database 124. As such, the
key-value data pairs are grouped based on the destination
information of either the JMS queue or the JMS topic.

In other embodiments, if either of the JMS queue or the
JMS topic associated with the received key-value data pair
does not exist in the plurality of the key-value data pairs in
the NoSQL database 124, then a column family is created for
the received key-value data pair. In one embodiment for the
JMS queue as the destination in the received key-value data
pair, the NoSQL driver 122 creates a column family for the
IMS queue in the NoSQL database 124 and stores the
received key-value data pair in the column family of the
NoSQL database 124.

In another embodiment for the JMS topic as the destina-
tion in the received key-value data pair, the NoSQL driver
122 creates a number of column families of the key-value
data pairs for the IMS topic in the NoSQL database 122. In
one embodiment, the NoSQL driver 122 creates the number
of column families based on number of clients as subscribers
to the JMS topic. As such, for each client as subscriber to the
JMS topic, a column family is created for the IMS topic. In
further embodiment, the NoSQL driver 122 replicates the
received key-value data pair for each of the column families
and stores the replicated key-value data pairs in each of the
column families. In one embodiment, the column families
are created when the clients subscribe to the JMS topic.

In some embodiments, the client stub 102 of the client 101
requests to the IMS sever 120 to retrieve key-value data pair
associated with the JMS queue. The client API stub 102
functions to receive the key-value data pair associated with
the IMS queue from the JMS server 120. In one embodi-
ment, the client API stub 102 receives the key-value data
pair associated with the JMS queue upon request. In some
embodiments, the client stub 102 converts the retrieved
key-value data pair associated with the JMS queue to the
JMS message associated with the JMS queue for the client
101. In other embodiment, the client API stub 102 sub-
scribes, via the JMS server 120, to the JMS topic associated
with a key-value data pair. In some embodiments, the client
stub 102 converts the retrieved key-value data pair associ-
ated with the JMS topic to the JMS message associated with
the JMS topic for the client 101.

In one embodiment, the NoSQL driver 122 receives a
request from the client API stub 102 to retrieve key-value
data pair associated with the JIMS queue. Such key-value
data pair associated with JMS queue may exist in the column
families of the key-value data pairs in the NoSQL database
124. In some embodiments, the NoSQL driver 122 functions
to retrieve the key-value data pairs from the JMS queue
stored in the NoSQL database 124.

In another embodiment, the NoSQL driver 122 receives a
request from the client API stub 102 to subscribe to the IMS
topic associated with the key-value data pair. As discussed
above, the JMS topic represents publish/subscribe messag-
ing for publishing JMS messages to a particular message
topic that are delivered to multiple subscribers. Such key-
value data pair associated with JMS topic may exist in the
column families of the key-value data pairs in the NoSQL
database 124. In some embodiments, the NoSQL driver 122
creates column families of the key-value data pairs in the

US 9,454,589 B2

5
NoSQL database 124 for the JMS topic based on the number
of clients as subscribers to the JMS topic. y. As such, for
each client subscribed to the JMS topic, a column family is
created for the JMS topic.

In other embodiments a new JMS message in the form of
new key-value data pair is received from the client API stub
102. In one embodiment, upon receipt of new key-value data
pair related to the JMS topic, the NoSQL driver 122 repli-
cates the new key-value data pair for all each of the column
families subscribed to the JMS topic. In some embodiments,
the NoSQL driver 122 automatically sends the replicated
key-value data pairs to the clients 101 in the column families
subscribed to the JMS topic.

FIG. 2A is a communication flow diagram depicting
interactions between a client 101 and the JMS sever 120
according to an embodiment of the disclosure. In one
embodiment, the client 101 and the JMS server 120 are the
same machines as described with respect to FIG. 1.

In one embodiment, the client API stub 102 of the client
101 converts a JMS message into a key-value data pair and
submits 202 a key-value data pair to the NoSQL driver 122
of the JMS server 120 as an ordinary storage request. As
discussed above, the key data of the key-value data pair
includes the timestamp information of the JMS message,
and the value data of the key-value data pair is the destina-
tion information of the JMS message. In one embodiment,
the destination is a JMS queue of the JMS server 120. In
another embodiment, the destination is a JMS topic associ-
ated with the JMS message and maintained by the JMS
server 120. In some embodiments, the JMS message is
generated by the client 101. In other embodiments, the JMS
message is received by the client 101.

The NoSQL driver 122 extracts the destination informa-
tion from the value data of the received key-value data pair
and searches the NoSQL database 124 to determine if either
a JMS queue or a JMS topic associated with the received
key-value data pair exists in the stored plurality of the
key-value data pairs in column family of the NoSQL data-
base 124. The NoSQL driver 122 stores 204a the received
key-value pair with the corresponding stored key-value data
pairs in the column family of the NoSQL database 124 if
either the JMS queue or the JMS topic associated with the
received key-value data pair exists in the stored plurality of
the key-value data pairs in the NoSQL database 124. The
NoSQL driver 122 creates 2045 a column family and stores
the received key-value data pair in the column family if
either the JMS queue or the JMS topic of the received
key-value data pair does not exist in the NoSQL database
124. In another embodiment, the client API stub 102 of the
client 101 sends a request 206 to retrieve a key value data
pair associated with the JMS queue to the NoSQL driver 122
of the JMS server 120. In some embodiments, the NoSQL
driver 122 searches for the key-value data pair associated
with the JMS queue stored in column families of the
key-value data pairs in the NoSQL database 124. The
NoSQL driver 122 retrieves 208 the key-value data pair
from the JMS queue The NoSQL driver 122 sends 210 the
retrieved key-value data pair associated with the JMS queue
to the client stub 102 of the client 101. The client stub 102
converts the retrieved key-value data pair associated with
the JIMS queue to the JMS message for the client 101.

FIG. 2B is a communication flow diagram depicting
interactions between a client 101 and the JMS sever 120
according to another embodiment of the disclosure. In one
embodiment, the client 101 and the JMS server 120 are the
same machines as described with respect to FIG. 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, the client API stub 102 of the client
101 sends a request 212 to subscribe to a JMS topic
associated with the JMS messages to the NoSQL driver 122
of the JMS server 120. The NoSQL driver 122 creates 214
a column family subscribed to the JMS topic in the NoSQL
database 124. In some embodiments, the NoSQL driver 122
creates a column family of the key-value data pairs in the
NoSQL database 124 for the JMS topic. As discussed above,
the column family subscribes the JMS topic for the client
subscribed to the JMS topic.

In another embodiment, the client API stub 102 of the
client 101 converts a new JMS message related to the IMS
topic into a new key-value data pair related to the JMS topic
and sends 216 the new key-value data pair related to the JMS
topic to the NoSQL driver 122 of the JMS server 120. The
NoSQL driver 122 replicates 218 the new key-value data
pair in the column families in the NoSQL database 124 for
all the clients subscribed to the JMS topic. The NoSQL
driver 122 then retrieves 220 the replicated key-value data
pair in the column family from the NoSQL database and
automatically sends 222 the replicated key-value data pair to
the client API stub 102 of the client 101 subscribed to the
JMS topic. The client API stub 102 converts the replicated
key-value data pair to the replicated JMS message to the
clients 101 subscribed to the JMS topic.

FIG. 3 is a flow diagram illustrating a server-side method
300 for providing messages for JMS according to an
embodiment of the disclosure. Method 300 may be per-
formed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (such as instructions run on a process-
ing device), firmware, or a combination thereof. In one
embodiment, method 300 is performed by NoSQL driver
122 of JMS server machine 120 of FIG. 1.

Method 300 begins at block 310 where a key-value data
pair is received by the NoSQL driver 122 of the JMS server
120 from the client 101. In one embodiment, the IMS server
120 receives the key-value data pair as part of a ordinary
storage request. As discussed above, the key data of the
received key-value data pair may include a timestamp of the
JMS message. The value data of the received key-value data
pair may include the destination information of the JMS
message. The destination of the JMS message may include
one of a JMS queue associated with the JMS message or a
JMS topic associated with the message. As discussed above,
the JIMS queue is a data structure construct that represents
one-to-one messaging (i.e., it supports point to point mes-
saging). The JMS topic may include a distribution mecha-
nism that represents publish/subscribe messaging for pub-
lishing JMS messages to a particular message topic that are
delivered to multiple subscribers. At block 312, the NoSQL
driver 122 of the JMS server 120 extracts the destination
information from the value data of the received key-value
data pair.

At block 314, the NoSQL driver 122 searches the NoSQL
database 124 for either the JMS queue or the JMS topic
associated with the received key-value data pair. As dis-
cussed above, the NoSQL database 124 stores a column
family including a plurality of key-value data pairs. At block
316, the NoSQL driver 122 determines if either the JMS
queue or the JMS topic associated with the received key-
value data pair exists in the stored plurality of the key-value
data pairs in the NoSQL database 124. If at block 316, it is
determined that one of the IMS queue or JMS topic exists,
then at block 318, the NoSQL driver 122 stores the received
key-value data pair with the corresponding stored key-value
data pairs in the column family of the NoSQL. database 124.

US 9,454,589 B2

7

If at block 316, it is determined that the neither the desti-
nation queue nor the destination topic for the received
key-value data pair exists, then at block 320, the NoSQL
driver 122 creates a column family in the NoSQL database
124 for the received key-value data pair. At block 322, the
NoSQL driver stores the received key-value data pair in the
column family of the NoSQL database 124.

FIG. 4 is a flow diagram illustrating a server-side method
400 for providing messages for JMS according to another
embodiment of the disclosure. Method 400 may be per-
formed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (such as instructions run on a process-
ing device), firmware, or a combination thereof. In one
embodiment, method 400 is performed by the NoSQL. driver
122 of FIG. 1.

Method 400 begins at block 410 where the NoSQL driver
122 of the JMS server 120 receives a request, from a client
API stub 102 of the client 101, to retrieve key-value data pair
associated with the JMS queue. At block 412, the NoSQL
driver 122 searches the NoSQL database 124 for the key-
value data pairs from the IMS queue. In one embodiment,
the JMS queue is associated with the column family of the
same name. At block 414, the NoSQL driver 122 retrieves
the key-value data pairs from the JMS queue in the NoSQL
database 124. At block 416, the NoSQL driver sends the
retrieved key value to the client 101.

FIG. 5 is a flow diagram illustrating a server-side method
500 for providing messages for JMS according to another
embodiment of the disclosure. Method 500 may be per-
formed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (such as instructions run on a process-
ing device), firmware, or a combination thereof. In one
embodiment, method 500 is performed by the NoSQL driver
122 of FIG. 1.

Method 500 begins at block 510 where the NoSQL driver
122 of the IMS server 120 receives, from a client 101, a
request to subscribe to a JMS topic. As discussed above, the
JMS topic represents publish/subscribe messaging for pub-
lishing JMS messages to a particular message topic that are
delivered to multiple subscribers. Such JMS messages may
be associated with JMS topics that exist in the column
families of the key-value data pairs in the NoSQL database
124. At block 512, the NoSQL driver 122 creates a column
family of the key-value data pairs in the NoSQL database
124 that subscribes to the JMS topic for the client subscribed
to the JMS topic. As such, for each subscribed to the IMS
topic, a column family is created for the IMS topic. At block
514, the NoSQL driver 122 receives a new JMS message in
the form of new key-value data pair associated with the IMS
topic. At block 516, the NoSQL driver 122 replicates the
new key-value data pair for the column family subscribed to
the JMS topic. In some embodiments, a the new key-value
data pair is replicated for all the column families subscribed
to the JMS topic At block 518, the NoSQL driver 122 sends
the replicated key-value data pair to the client 101 of the
column family subscribed to the JMS topic. In some
embodiments, the NoSQL driver 122 sends the replicated
key-value data pair to all the clients 101 of the column
families subscribed to the JMS topic.

FIG. 6 is a flow diagram illustrating a client-side method
600 for providing messages for JMS according to another
embodiment of the disclosure. Method 600 may be per-
formed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (such as instructions run on a process-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing device), firmware, or a combination thereof. In one
embodiment, method 600 is performed by the client API
stub 102 of client device 101 of FIG. 1.

Method 600 begins at block 610, where the client API
stub 102 of the client device 101 receives a JMS message.
The client API stub 102 may generate the JMS message
itself for transmission to a JMS server 120. At block 612, the
client API stub 102 of the client 101 determines the time-
stamp information associated with the JMS message. At
block 614, the client API stub 102 determines the destination
information associated with the JMS message. At block 616,
the client API stub 102 of the client 101 converts the JMS
message into a key-value data pair form. As discussed
above, key data may include the time stamp information of
the JMS message representing, for example, the time when
the JMS message was received by the client 101. Also, as
discussed above, the value data include destination infor-
mation of the JMS message. In one embodiment, the desti-
nation is a JMS queue of the JMS server 120. In other
embodiment, the destination is a JMS topic of the JMS
server 120. At block 618, the client API stub 102 sends the
key-value data pair to the JMS server 120.

FIG. 7 illustrates a diagrammatic representation of a
machine in the example form of a computer system 700
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client machine in a client-server network environment, or as
a peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The example computer system 700 includes a processing
device 702, a main memory 704 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or Ram-
bus DRAM (RDRAM), etc.), a static memory 706 (e.g.,
flash memory, static random access memory (SRAM), etc.),
and a data storage device 718, which communicate with
each other via a bus 730.

Processing device 702 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of instruction sets. Processing device 702 may also be one
or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
702 is configured to execute NoSQL processing logic 722
including the NoSQL driver 122 of FIG. 1 for performing
the operations and steps discussed herein.

US 9,454,589 B2

9

The computer system 700 may further include a network
interface device 708. The computer system 700 also may
include a video display unit 710 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 712 (e.g., a keyboard), a cursor control device 714
(e.g., a mouse), and a signal generation device 716 (e.g., a
speaker).

The data storage device 718 may include a machine-
accessible storage medium (or more specifically a computer-
readable storage medium) 720 on which is stored one or
more sets of instructions (e.g. NoSQL processing logic 722)
embodying any one or more of the methodologies of func-
tions described herein (e.g. NoSQL driver 122 of FIG. 1).
The NoSQL processing logic 722 may also reside, com-
pletely or at least partially, within the main memory 704
and/or within the processing device 702 during execution
thereof by the computer system 700; the main memory 704
and the processing device 702 also constituting machine-
accessible storage media.

The machine-readable storage medium 720 may also be
used to store the NoSQL processing logic 722 persistently.
While the machine-accessible storage medium 720 is shown
in an example embodiment to be a single medium, the term
“machine-accessible storage medium” should be taken to
include a single medium or multiple media (e.g., a central-
ized or distributed database, and/or associated caches and
servers) that store the one or more sets of instructions. The
term “machine-accessible storage medium” shall also be
taken to include any medium that is capable of storing,
encoding or carrying a set of instruction for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present disclosure. The
term “machine-accessible storage medium” shall accord-
ingly be taken to include, but not be limited to, solid-state
memories, and optical and magnetic media.

In the following description, numerous details are set
forth. It is apparent, however, to one skilled in the art, that
the present disclosure may be practiced without these spe-
cific details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present disclosure.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “sending”, “receiving”, “extracting”, “retrieving”, “rep-
licating”, “creating”, “storing” or the like, refer to the action
and processes of a computer system, or similar electronic
computing device, that manipulates and transforms data

10

15

20

25

30

35

40

45

50

55

60

65

10

represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

The disclosure also relates to an apparatus for performing
the operations herein. This apparatus may be specially
constructed for the specific purposes, or it may comprise a
general purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a machine readable
storage medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the specific method steps. The structure for a variety
of these systems will appear as set forth in the description
below. In addition, the present disclosure is not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the disclosure as
described herein.

The disclosure may be provided as a computer program
product, or software, that may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer system (or other electronic
devices) to perform a process according to the present
disclosure. A machine-readable medium includes any
mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computer). For example, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM”), random access
memory (“RAM”), magnetic disk storage media, optical
storage media, flash memory devices, etc.), etc.

It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
embodiments will be apparent to those of skill in the art
upon reading and understanding the above description.
Although the present disclosure has been described with
reference to specific examples of the embodiments, it will be
recognized that the disclosure is not limited to the embodi-
ments described, but can be practiced with modification and
alteration within the spirit and scope of the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive
sense. The scope of the disclosure should, therefore, be
determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled.

What is claimed is:

1. A method comprising:

determining, by a processing device executing an appli-

cation programming interface (API) stub, a timestamp
information associated with a first JAVA™ message
service (JMS) message, wherein the timestamp infor-
mation represents a time when the JMS message is
either generated by the processing device or received
by the processing device;

US 9,454,589 B2

11

determining, by the processing device executing the API
stub, a destination information associated with the JMS
message; and

converting the JMS message into a first key-value data
pair comprising a key data and a value data, wherein
the key data comprises the timestamp information and
the value data comprises the destination information of
the first JMS message.

2. The method of claim 1 further comprising sending the

first key-value data pair to a JMS server.
3. The method of claim 2 wherein the first key-value data
pair is sent to the JMS server as a storage request.
4. The method of claim 1 wherein the destination infor-
mation is a JMS queue associated with the first key-value
data pair.
5. The method of claim 1 wherein the destination infor-
mation is a JMS topic associated with the first key-value data
pair.
6. The method of claim 5 wherein the API stub subscribes
to the JMS topic associated with the first key-value data pair.
7. The method of claim 6 further comprising receiving, by
the processing device executing the API stub subscribed to
the JMS topic, a second key value data pair, wherein the
second key value data pair is a replicate of the first key value
data pair.
8. The method of claim 7 further comprising converting
the second key value data pair to a second JMS message,
wherein the second JMS message is a replicate of the first
JMS message.
9. A system comprising:
a memory;
a processing device to execute an application program-
ming interface (API) stub, operatively coupled to the
memory, to:
determine a timestamp information associated with a
first JAVA™ message service (JMS) message,
wherein the timestamp information represents a time
when the JMS message is either generated by the
processing device or received by the processing
device;

determine a destination information associated with the
JMS message; and

convert the JMS message into a first key-value data pair
comprising a key data and a value data, wherein the
key data comprises the timestamp information and
the value data comprises the destination information
of the first IMS message.

10. The system of claim 9, wherein the processing device
is to send the first key-value date pair to a JMS server as a
storage request.

10

30

35

40

45

12

11. The system of claim 9, wherein the destination infor-
mation is one of a JIMS queue or a JMS topic associated with
the first key-value data pair.
12. The system of claim 11 wherein the API stub sub-
scribes to the JMS topic associated with the first key-value
data pair.
13. The system of claim 12, wherein the processing device
to execute the API stub subscribed to the JMS topic is to
receive a second key value data pair, wherein the second key
value data pair is a replicate of the first key value data pair.
14. The system of claim 13, wherein the processing device
is to convert the second key value data pair to a second JMS
message, wherein the second JMS message is a replicate of
the first JMS message.
15. A non-transitory machine-readable storage medium
comprising instructions that, when accessed by a processing
device to execute an application-programming interface
(API) stub, cause the processing device to:
determine, by the processing device, a timestamp infor-
mation associated with a first JAVA™ message service
(JMS) message, wherein the timestamp information
represents a time when the JMS message is either
generated by the processing device or received by the
processing device;
determine, by the processing device, a destination infor-
mation associated with the JMS message; and

convert the JMS message into a first key-value data pair
comprising a key data and a value data, wherein the key
data comprises the timestamp information and the
value data comprises the destination information of the
first IMS message.

16. The non-transitory machine-readable storage medium
of claim 15, wherein the processing device is to send the first
key-value date pair to a JMS server as a storage request.

17. The non-transitory machine-readable storage medium
of claim 15, wherein the destination information is one of a
JMS queue or a JMS topic associated with the first key-value
data pair.

18. The non-transitory machine-readable storage medium
of claim 17, wherein the API stub subscribes to the JMS
topic associated with the first key-value data pair.

19. The non-transitory machine-readable storage medium
of claim 18, wherein the processing device to execute the
API stub subscribed to the JMS topic is to receive a second
key value data pair, wherein the second key value data pair
is a replicate of the first key value data pair.

20. The non-transitory machine-readable storage medium
of claim 19, wherein the processing device is to convert the
second key value data pair to a second JMS message,
wherein the second JMS message is a replicate of the first
JMS message.

